

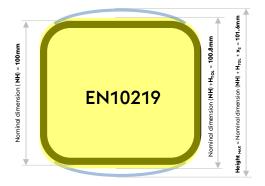
CONCAVITY & CONVEXITY

DEFINITION

Concavity or convexity refers to the curvature of the side surfaces of square and rectangular tubes inwards or outwards:

- » Convexity riangle Curvature of the side surfaces outwards

According to current standards, the curvature of the side surfaces is defined as follows:


	EN10219 Cold-formed, welded hollow sections for steel construction	endurance
Concavity x ₁ /	Maximum 0.8% of the side length	Within the dimensional
Convexity x ₂ 1)	but minimum 0.5mm	tolerance

¹⁾ The tolerance values for concavity and convexity apply independently of the tolerance for the external dimensions

GRAPHICAL REPRESENTATION USING THE EXAMPLE 100/100

An example shows the difference between the valid EN10219 standard and endurance tubes from voestalpine Krems GmbH:

- » Square tube nominal dimension (NB) width: 100mm, nominal dimension (NH) height: 100mm
- » Dimensional tolerance of the side lengths B_{TOL}/H_{TOL} for endurance tubes: 0.7mm
- » Tolerance concavity x_1 convexity x_2 : 0.8% of the side length, mindestens 0.5mm = 2 * (0.8% * 100mm) = 1.6mm

EN10219 allows addition of dimensional tolerance and curvature tolerance

Height_{MAX} = Nom. dim. (NH) + H_{TOL} + 2 * X_2 = 100mm + 0.8mm + 2 * 0.8mm = 102.4mm

endurance tubes include the curvature tolerance in the dimensional tolerance

 $Height_{MAX} = Nom.dim. (NH) + H_{TOL} + x_2 = 100mm + 0.7mm = 100.7mm$

The tube height must not exceed or fall below the dimensional tolerance over the entire tube width

