

Tailor-Made Protectivity™

SOLUTIONS FOR THE CEMENT INDUSTRY

TAILOR-MADE PROTECTIVITY™

Proven under the toughest conditions: Our products protect metal surfaces from wear and corrosion. With over 70 years of experience and the broadest product portfolio

in the industry, we are your preferred partner for Surface Protection solutions. We deliver what we promise: Surface Protection tailored to your needs.

Our customers benefit from a partner with

- » the highest expertise in joining, rendering the best application support globally available
- » specialized and best in class product solutions for their local and global challenges
- » an absolute focus on customer needs and their
- » a worldwide presence through factories, offices and distributors

TAILOR-MADE PROTECTIVITY™

Industry experience and applications know-how – combined with innovative and custom (tailor-made) products – guarantee that our customers obtain the ideal combination of productivity and protection, within the shortest operating

times and up to the maximum performance capacity of their products.

This explains UTP's guiding principle – "Tailor-Made Protectivity $^{\text{TM"}}$ – which puts the focus on the customer.

RESEARCH AND DEVELOPMENT FOR CUSTOMIZED SOLUTIONS

At UTP, research and development, conducted in collaboration with customers, plays a crucial role. Because of our strong commitment to research and development, combined with our tremendous innovative capacity, we are

constantly engineering new products, and improving existing ones on an ongoing basis.

The result is a vast number of innovative products for solving individual problems and complex matters.

CUSTOMIZED PRODUCTS OF SUPERIOR QUALITY

We continuously adapt our product portfolio of about 600 products to customer and industry specifications, while ensuring that we meet the highest quality specifications.

From its in-house production facilities, UTP delivers innovative, tailor-made welding filler metals for: unalloyed and fine-grained structural steel, low-grade alloyed steels, rust-proof, acid-proof, and heat-proof steels, nickel-based alloys, cast iron, copper and copper alloys, manganese steels, tool steels, and cobalt steels.

The product portfolio comprises:

- » Stick electrodes
- » Solid wires and rods
- » Flux cored wires
- » Submerged arc wires and fluxes
- » Submerged arc and electroslag strips & fluxes
- » Spraying- and PTA-powders

SOLUTIONS AT EVERY POINT ON THE GLOBE

UTP provides products and services through the global branches of voestalpine Böhler Welding and its dealer network in more than 150 countries throughout the world.

A team of welding engineers stand at the customer's side, providing advice and support in all matters related to the challenges of welding technology.

CONTENT

TAILOR-MADE PROTECTIVITY™	2	PREHEATER CYCLONE	2
CEMENT INDUSTRY	6	SOLUTIONS FOR PREHEATER CYCLONE	21
LIMESTONE MINING	8	ROTARY KILN	22
SOLUTIONS FOR LIMESTONE QUARRY		SOLUTIONS FOR ROTARY KILN	22
APPLICATIONS	9 9	CLINKER COOLER	24
Wheel loader Dumper	11 11	SOLUTIONS FOR CLINKER COOLER	25
Crushers	12 14	ELECTROSTATIC PRECIPITATOR	26
BLENDING BED	16	SOLUTIONS FOR ELECTROSTATIC PRECIPITATOR	26
SOLUTIONS FOR BLENDING BED APPLICATIONS	16 16	ALL PRODUCTS Covered electrodes for repair of cracked material Surfacing electrodes for wear protection	28 29 30
RAW MATERIAL MILLS	17	Solid wires for repair, wear and corrosion protection Gas shielded cored wires for wear protection	31 32
SOLUTIONS FOR ROLLER PRESS,		Open arc cored wires for wear protection	33
VERTICAL AND BALL MILLS	18 18	METALLOGRAPHIC STRUCTURES	34
Vertical mill	18 19	HARDNESS CONVERSION TABLE	36

CEMENT INDUSTRY

We help optimize the plant productivity by providing high-quality maintenance and repair welding consumables, valuable counseling and continuous support.

Cement processing equipment is exposed to severe wear due to impact, abrasion, and high temperatures.

The wear rate is influenced by several factors, including the raw materials, clinker, and cement, the material used for wear-resistant components; and the design and operational parameters of the mill. Excessive wear leads to reduced grinding efficiency and product quality, increased energy consumption, equipment vibrations and the risk of damage to the mill. It also leads to higher maintenance costs.

Hardfacing allows maintaining the original components' profile to guarantee optimum production conditions. It should be applied before energy consumption rises or grinding efficiency drops to unacceptable levels.

The process enhances wear resistance by depositing a surface layer with an austenitic matrix enriched with hard carbides, offering excellent protection.

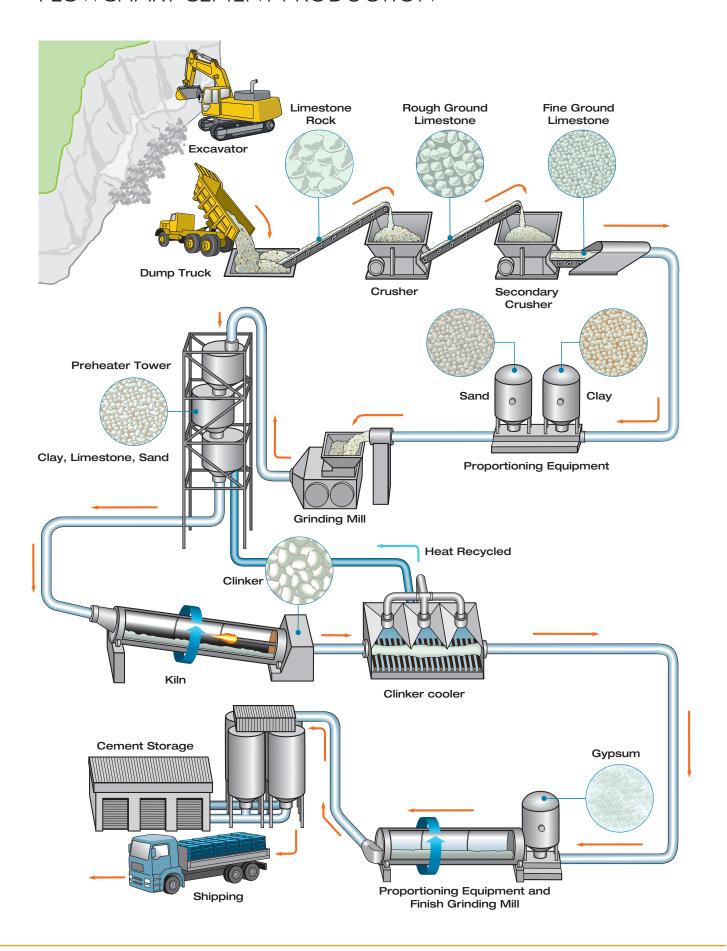
Applications

Vertical mills; Rotary kilns and presses; Crushers; Classifiers; Cones; Hammers; Wear plates

Products

We provide iron-based, copper-based, cobalt-based and nickel-based hardfacing products allowing preventive or curative overlay welding in a large range of industries and in process with wear challenges.

Service


We provide additional value by offering the following:

- » Network of service partners able to provide excellence in in-situ or ex-situ hardfacing
- » Expertise in overlay welding and hardfacing techniques and applications
- » Training of welders, supervisors and engineers

Approvals

We manufacture welding consumables that comply with quality programs such as ISO 9001 (2008) and ASME QSC580.

FLOWCHART CEMENT PRODUCTION

CEMENT INDUSTRY

LIMESTONE MINING

The most important component in cement production is limestone. Limestone is extracted through blasting in opencast mines before being crushed. The crushed limestone is then transported via conveyor belts to a blending bed for temporary storage.

SOLUTIONS FOR LIMESTONE QUARRY APPLICATIONS

Crawler excavators

		Product recommend	ations		
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Excavator shovel	caused by abrasion and can be accompanied with a	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
		WEARstick Dur 650	WEARmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
	great deal of impact. Most buckets are fabricated from	WEARstick XD 61			WEARcore XD 60-O
	combination of carbon steel & manganese steel & may be lined with a abrasion resistant liners.	WEARstick XD 63			WEARcore XD 63-O
Delate	Bucket teeth come to use	WEARstick MnCr4			WEARcore MnCr8-O
Bucket teeth	in the excavating of ore, stones or other materi-	WEARstick MnCr13			WEARcore MnCr13-O
	als. Wear is predominantly caused by abrasion and	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
///0	can be accompanied with a great deal of impact.	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
		WEARstick XD 61			WEARcore XD 60-O
		WEARstick XD 63			WEARcore XD 63-O
Idler	Undercarriage components	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	typically wear by metal to metal, abrasion and slight impact.	WEARstick DUR 350		UTP ROBOTIC 352	
Track roller	Undercarriage components typically wear by metal to metal, abrasion and impact.	WEARstick DUR 350		UTP ROBOTIC 352	
Drive sprocket	Undercarriage components	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
TARAM.	typically wear by metal to metal, abrasion and impact.	UTP 65 D	Thermanit 30/10		
		WEARstick MnCr4			WEARcore MnCr8-O
		WEARstick MnCr13			WEARcore MnCr13-O
وركالقا		WEARstick Dur 250	WEARmig 250		WEARcore Dur 200-O
Tooth Adaptor	In addition to abrasive wear, cracks may occur due to overload.	UTP 63	Thermanit X	UTP 402-G	UTP 402-O

Wheel loader

		Product recommendations				
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire	
Payloader Bucket	Wear is predominantly	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600		
	caused by abrasion and can be accompa-	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O	
	nied with a great deal of impact.	WEARstick XD 61			WEARcore XD 60-O	
		WEARstick XD 63			WEARcore XD 63-O	
Payloader Bucket	Wear is predominantly caused by abrasion	UTP 63	Thermanit X	UTP 402-G	UTP 402-O	
- 100000 C	and can be accompa- nied with a great deal of impact.	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600		
		WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O	
Last last land land land		WEARstick XD 61			WEARcore XD 60-O	
		WEARstick XD 63			WEARcore XD 63-O	
Bucket teeth	Bucket teeth come to use	WEARstick MnCr4				
	in the excavating of ore, stones or other materials.	WEARstick MnCr13			WEARcore MnCr13-O	
	Wear is predominantly caused by abrasion	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600		
///0)	and can be accompa- nied with a great deal of	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O	
	impact.	WEARstick XD 61			WEARcore XD 60-O	
		WEARstick XD 63			WEARcore XD 63-O	

Dumper

		Product recommendations			
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Load Liner	Wear is predominantly caused by abrasion and can be accompanied with a great deal of impact. Liner plates	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
		UTP 65 D	Thermanit 30/10		
		WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
	are used for protecting the dump area. These liner plates needs to be joined to base plate of carbon steel.			UTP ROBOTIC 601	WEARcore Dur 58 TiC-O

LIMESTONE MINING

Crushers

			Product recommend	ations		
Product	Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Jaw Crusher	Jaw plates	Jaw plates	UTP 63			
	(7/1/1/1/11)	are subjected to high stress	WEARstickMnCr4			WEARcore MnCr8-O
	/////	abrasion coupled with	WEARstick MnCr13			WEARcore MnCr13-O
		moderate impact.	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
			WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O
		Crusher Man- tle is sub- jected to high	UTP 63			
			WEARstickMnCr4			WEARcore MnCr8-O
		stress abra- sion coupled	WEARstick MnCr13			WEARcore MnCr13-O
		with moderate impact.	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
			WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O
0.80 0.00/		Crusher Man-	WEARstickMnCr4			WEARcore MnCr8-O
		tle is sub- jected to high	WEARstick MnCr13			WEARcore MnCr13-O
		stress abra- sion coupled	WEARstick Dur 350	WEARmig Dur 450	UTP ROBOTIC 352	WEARcore Dur 400-O
		with moderate impact.	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
			WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O

Crushers

			Product recommend	lations		
Product	Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Impact crusher	Impactor	Impactor arm	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	Arm	is subjected to high impact &	WEARstickMnCr4			WEARcore MnCr8-O
		abrasion.	WEARstick MnCr13			WEARcore MnCr13-O
			WEARstick Dur 350	WEARmig Dur 450	UTP ROBOTIC 352	WEARcore Dur 400-O
. ,15,			WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
			WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O
	Impactor Plates	Impactor	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	ridles	plates are subjected	WEARstickMnCr4			WEARcore MnCr8-O
	<i> </i>	to moder- ate impact	WEARstick MnCr13			WEARcore MnCr13-O
		& high stress abrasion.	WEARstick Dur 350	WEARmig Dur 450	UTP ROBOTIC 352	WEARcore Dur 400-O
			WEARstick Dur 650	WEARmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
			WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O
Hammer crusher	Hammers	Hammers are	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
Crusner		subjected to high impact	WEARstickMnCr4			WEARcore MnCr8-O
	MO O	& abrasion. Usually the	WEARstick MnCr13			WEARcore MnCr13-O
		base material is manganese	WEARstick Dur 350	WEARmig Dur 450	UTP ROBOTIC 352	WEARcore Dur 400-O
		steel.	WEARstick Dur 650	WEARmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
			WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O
	Side wear liners	Side wear lin- ers are sub-	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	imers	jected to high	WEARstickMnCr4			WEARcore MnCr8-O
	///////	stress abra- sion with mod-	WEARstick MnCr13			WEARcore MnCr13-O
		erate impact. Ususally the	WEARstick Dur 350	WEARmig Dur 450	UTP ROBOTIC 352	WEARcore Dur 400-O
		base material is manganese	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
		steel.	WEARstick XD 61			WEARcore XD 60-O
			WEARstick XD 63			WEARcore XD 63-O

LIMESTONE MINING

Conveyor systems

		Product recommend	lations		
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Gear wheel	These drive gears & pinion are made	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
Marie Caraca	either from cast iron or steel Standard	UTP 65D	Thermanit 30/10		
-dimononing	problem are of friction wear or breakage of	WEARstick Dur 350		UTP ROBOTIC 352	
	tooth.	UTP 86 FN	UTP A8051 Ti	UTP FNM4-G	
Collection tray	Wear is predominantly	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	caused by moderate impact and abrasion.	UTP 65D	Thermanit 30/10		
	Wearplates are welded with crack				
₩.	resistant welding consumables				
Vibrating feeder	Wear is predominantly caused by impact and	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	abrasion.	UTP 65D	Thermanit 30/10		
Screw-conveyor	Screw conveyor flights wall & edge wear out	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
EGGGCCCCCCCCCCC	due to abrasion.	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
E-000000000000000000000000000000000000		WEARstick XD 61		UTP ROBOTIC 6010	WEARcore XD 60-O
		WEARstick XD 62			
					WEARcore XD 70-O
				WEARcore XD NiW46	

BLENDING BED

At the cement plant the crushed stone is stored in blending beds. Homogenization is usually necessary if there are major fluctuations in raw material composition. The stockpiles consists of different layers of various types of raw materials. The stockpiles are subsequently cleared away layer by layer. The calcium carbonate content of the raw material mixture should be at least 76-78%. Attention must also be paid to the ratio of silica, iron oxide and alumina.

SOLUTIONS FOR BLENDING BED APPLICATIONS

Wheel loader

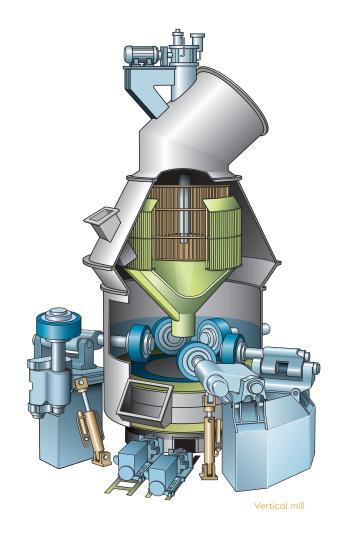
		Product recommendations					
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire		
Bucket	Wear is predominantly	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600			
	caused by abrasion and can be accompanied	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O		
	with mild impact at lip areas.	WEARstick XD 61			WEARcore XD 60-O		
	Most buckets are fabricated from combination of carbon steel & may be lined with a abrasion resistant liners	WEARstick XD 63			WEARcore XD 63-O		
Bucket teeth	Wear is predominantly	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600			
	caused by abrasion and can be accompa-	WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O		
///0	nied with a great deal of impact.	WEARstick XD 61			WEARcore XD 60-O		
		WEARstick XD 63			WEARcore XD 63-O		
Stacker wheels	Wear is predominantly caused due to presence of silica/raw material dust on tracks & abrasion caused by movement of stacker wheels on these tracks.	WEARstick Dur 350		UTP ROBOTIC 352			

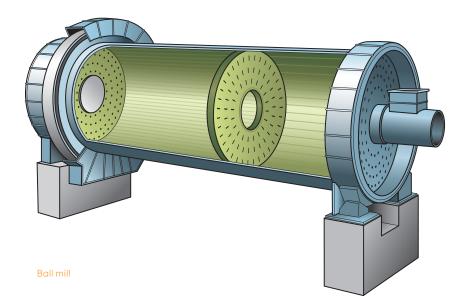
RAW MATERIAL MILLS

After being stored in the blending bed, the crushed stone (raw material) is transported to the drying plant. Here the crushed stone is dried before being transferred to the raw material mill. A dosage unit feeds in the admixtures sand, iron ore and ash in the required proportions.

Type of mill

Roller press


For roller press, the grinding parts are two rollers of the same size rotating on opposite direction. The materials fall vertically from the top to the two rollers , which forces particles to crush one another reducing to 20-30 % of original volume.


Ball mill

A ball mill is a horizontal cylinder filled with with steel balls. They are usually round but sometimes take other shapes. The raw materials are crushed between the balls by the rotating and cascading effect.

Vertical mill

Vertical mills are available with different types of grinder, and vary according to manufacturer. The various components in a vertical mill, such as grinding table, grinding rollers and grinding track, are usually manufactured from chill-casting alloys. The grinding rollers press down onto the rotating grinding table, either through their own weight or with the aid of hydraulic cylinders, to crush the rawmix. The grinding rollers are usually conical, cylindrical or spherical, depending on the form of the grinding table.

RAW MATERIAL MILLS

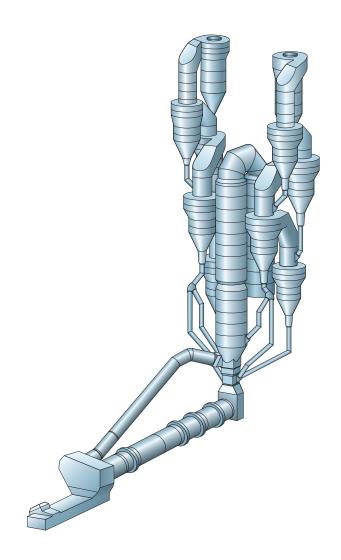
SOLUTIONS FOR ROLLER PRESS, VERTICAL AND BALL MILLS

Roller press

		Product recommendations						
Component Descrip	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire			
Roller press	Subjected to high grinding impact			WEARcore Dur 400-S (SAW)				
	and pressure			WEARcore Dur 58 Nb-S (SAW)				
			WEARmig Dur 600	UTP ROBOTIC 600	WEARcore Dur 58 TiC-O			
		WEARstick XD 63						

Vertical mill

		Product recommend	lations		
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Inlet chute	Feeding the vertical mill with	UTP 63			
	crushed stone. Wear is primarily the result of abrasion.	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
		WEARstick Dur 650	WEARrmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
		WEARstick XD 61			WEARcore XD 60-O
*					WEARcore XD 62-O
		WEARstick XD 63			WEARcore XD 63-O
Outlet duct	The light and finely crushed	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	material is extracted from the mill via the outlet duct. Wear is pri-	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
	marily the result of abrasion.	WEARstick Dur 650	WEARmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
		WEARstick XD 61			WEARcore XD 60-O
		WEARstick XD 63			WEARcore XD 63-O
Grinding roller	The grinding rollers press down	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	onto the rotating grinding table, either through their own weight	WEARstick XD 61			WEARcore XD 60-O
	or with the aid of hydraulic cylinders, to crush the feed material.				WEARcore XD 62-O
	The grinding rollers are usually conical, cylindrical or spherical, depending on the form of the grinding table. Wear is primarily the result of abrasion.	WEARstick XD 63			WEARcore XD 63-O
Reject cone	Wear is primarily the result of	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	abrasion.	WEARstick XD 61			WEARcore XD 60-O
		WEARstick XD 63			WEARcore XD 63-O
Grinding table	The rawmix is crushed finely as	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	it passes between the grinding table and grinding rollers. Wear is	WEARstick XD 61			WEARcore XD 60-O
	primarily the result of abrasion.				WEARcore XD 62-O
		WEARstick XD 63			WEARcore XD 63-O


Vertical mill

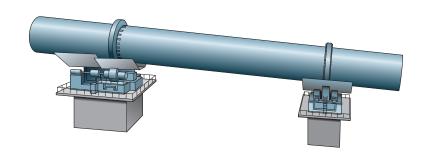
		Product recommendations				
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire	
Classifier Guide vanes	Wear is primarily the result of abrasion.	UTP 63	Thermanit X	UTP 402-G	UTP 402-O	
	result of abrasion.	WEARstick XD 61			WEARcore XD 60-O	
		WEARstick XD 63			WEARcore XD 63-O	
		WEARstick XD 65			WEARcore XD 65-O	
Dam ring	Wear due to abrasion	UTP 63	Thermanit X	UTP 402-G	UTP 402-O	
	caused by limestone spill overs while crush-	WEARstick XD 61			WEARcore XD 60-O	
	ing on table.	WEARstick XD 63			WEARcore XD 63-O	
Crushing roll shaft guards	Wear due to erosion.	UTP 63	Thermanit X	UTP 402-G	UTP 402-O	
		WEARstick XD 61			WEARcore XD 60-O	
		WEARstick XD 63			WEARcore XD 63-O	
Roller Hub	Wear due to friction /	UTP 63	Thermanit X	UTP 402-G	UTP 402-O	
	abrasion caused by loosening of tyre.	UTP 65				
		UTP 86 FN	UTP A 8051 Ti		UTP FNM4-G	
Vertical mill body	Repair of cracked	Thermanit Nicro 82	Thermanit Nicro 82	FOXcore Nicro 82-T0		
	sections.	UTP 7015				

Ball mill

		Product recommendations					
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire		
Wear plates	Wear is primarily the result of abrasion as well as impact.	UTP 63	Thermanit X	UTP 402-G	UTP 402-O		
Trunnion Magnet	Cracks	UTP 7015					
		Thermanit Nicro 82	Thermanit Nicro 82	FOXcore Nicro 82-T0			
Gear Ring	Cracks	UTP 63	Thermanit X	UTP 402-G	UTP 402-O		
	These drive gears &	UTP 86 FN	UTP A 8051 Ti	UTP FNM4-G			
	pinion are made either from cast iron or steel. Standard problem are frictional wear or brek- age of tooth.	WEARstick Dur 350		UTP ROBOTIC 352			

PREHEATER CYCLONE

The ground limestone is fed into the preheater cyclone where it is heated together with silica and additives including iron and aluminium oxide, and neutralized. Before leaving the preheater the rawmix will have been heated to a temperature of approx. 1000 °C.

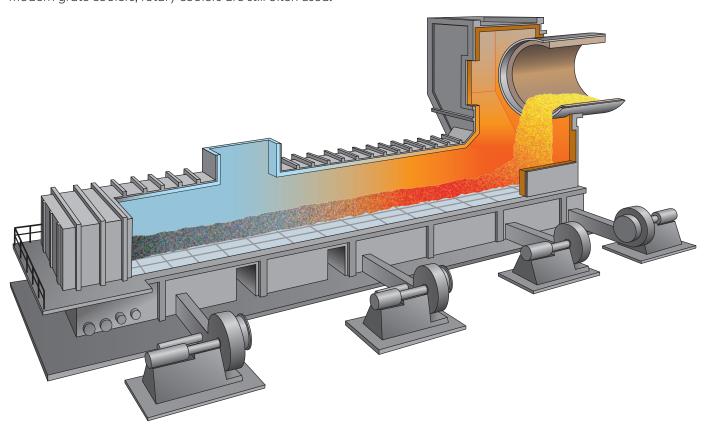

SOLUTIONS FOR PREHEATER CYCLONE

		Product recommend	lations		
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Cast Pipes	Wear due to abrasion. Welding of wear plates	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
Preheater Fan	Wear Due to erosion.	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
		WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
		WEARstick Dur 650	WEARmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
		WEARstick XD 61			WEARcore XD 60-O
		WEARstick XD 63			WEARcore XD 63-O
		WEARstick XD 65			WEARcore XD 65-O
				WEARcore XD NiW46	WEARcore XD 70-O

PREHEATER CYCLONE 21

ROTARY KILN

In the rotary kiln the preheated raw mix is converted into cement clinker at a temperature of approx. 1400°C. The slight inclination and constant rotation of the rotary kiln transports the heated raw materials from the feed in side through to the exit.

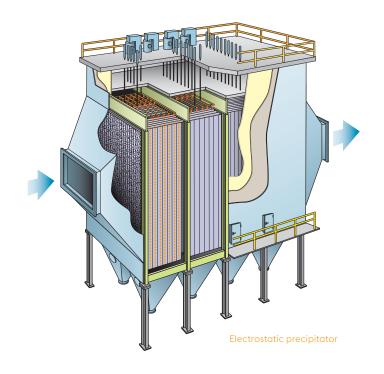

SOLUTIONS FOR ROTARY KILN

		Product recommende	ations		
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Thermo bar	Wear caused by high temperatur oxidation.	UTP 6225 AL			
Kiln Tyre	Repair of cracked	Thermanit Nicro82	Thermanit Nicro82	FOXcore Nicro 82-T0	
	sections.	UTP 7015			
Girth Gear & Pinion	The gear develops cracks in service.	Thermanit Nicro82	Thermanit Nicro82	FOXcore Nicro 82-T0	
		UTP 7015			
	The teeth pro- file wears out in service due to friction.	UTP 86 FN	UTP A 8051 Ti	UTP FNM4-G	
Thrust Rollers	Wear due to	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	friction.	UTP 65D	Thermanit 30/10		
		WEARstick Dur 350		UTP ROBOTIC 352	

		Product recommend	ations		
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
Weld-on anchor	Welding of stain- less steel anchors	Thermanit Nicro 82	Thermanit Nicro82	FOXcore Nicro 82-T0	
	to carbon steel Kiln shell.	UTP 68 H	Thermanit 310 Mn		
Steel shell	Cracks due to	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	fatigue wear	Thermanit Nicro 82	Thermanit Nicro82	FOXcore Nicro 82-T0	
Tip casting segments	Wear due to abra-	Thermanit Nicro 82	Thermanit Nicro82	FOXcore Nicro 82-T0	
	sion at elevated temperature.	WEARstick XD 65			
Kiln support rollers	Wear due to fric-	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	tion / abrasion	Thermanit Nicro 82	Thermanit Nicro82	FOXcore Nicro 82-T0	
		WEARstick Dur 250	WEARmig Dur 250		
09					WEARcore Dur 200-O
		WEARstick Dur 350		UTP ROBOTIC 352	

CLINKER COOLER


In the grate cooler the hot clinker is evenly distributed over perforated grating and subjected to a stream of cold air. The grating is made from steel and the cold air prevents the steel grating from melting or burning. In contrast to modern grate coolers, rotary coolers are still often used.


SOLUTIONS FOR CLINKER COOLER

		Product recommend	Product recommendations											
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire									
Cooler grate plates	Cracks	Thermanit Nicro 82	Thermanit Nicro82	FOXcore Nicro 82-T0										
Towns or the second of the sec	Wear due to abra-	WEARstick XD 65			WEARcore XD 65-O									
	sion at elevated temperature.				WEARcore XD 70-O									

		Product recommendo	Product recommendations											
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire									
Clinker Hammers	Wear due to impact and abrasion.	UTP 63	Thermanit X	UTP 402-G	UTP 402-O									
	and abrasion.	WEARstick MnCr4			WEARcore MnCr8-O									
		WEARstick MnCr13			WEARcore MnC13-O									
		WEARstick XD 65			WEARcore XD 65-O									

SOLUTIONS FOR ELECTROSTATIC PRECIPITATOR

		Product recommendat			
Component	Description of wear	Covered Electrode	Solid wire	Gas shielded cored wire	Open Arc wire
I D Fan	Wear Due to	UTP 63	Thermanit X	UTP 402-G	UTP 402-O
	erosion.	WEARstick Dur 600	WEARmig Dur 600	UTP ROBOTIC 600	
		WEARstick Dur 650	WEARmig Tool 58	UTP ROBOTIC 601	WEARcore Dur 58 TiC-O
		WEARstick XD 61			WEARcore XD 60-O
		WEARstick XD 63			WEARcore XD 63-O
		WEARstick XD 65			WEARcore XD 65-O
					WEARcore XD 70-O
				WEARcore XD NiW46	

ALL PRODUCTS

with classification, properties, characteristics and fields of use

- » Covered electrodes for repair of cracked material
- » Surfacing electrodes for wearprotection
- » Solid wires for repair, wear and corrosion protection
- » Gasshielded cored wires for wear protection
- » Open arc cored wires for wear protection

Covered electrodes for repair of cracked material

<u>o</u>	Classification	Mechanical prope	rties of the weld					Comp	ositior	n % (Al	l weld	metal)			
Name		ine cai		С	Mn	Si	Cr	Ni	Мо	Nb	Ti	Al	Y	W	٧	Fe
	EN 14700 E Fe10	Yield strength R _{P0,2}	Tensile strength R _m	0,1	5,5	0,5	19,0	8,5								bal.
23	EN ISO 3581-A E 18 8 Mn R 32	> 350 MPa	> 600 MPa													
UTP 63	L 10 0 1 111 K 32	Elongation A	Impact strength K _V													
Þ		> 40 %	> 60J (RT)													
	Characteristics	and field of use	With the fully austen					ctural	and he	eat-tre	atable	steels	can b	e weld	ed, als	o in
	EN 14700 E Z Fe11	Yield strength R _{P0,2}	Tensile strength R _m	0,1	1,0	1,0	30,0	9,5								bal.
۵	EN ISO 3581-A ~ E 29 9 R 12	> 640 MPa	> 800 MPa													
P 65	22,71012	Elongation A														
UTP		> 20 %														
	Characteristics	and field of use	UTP 65 D has been c									pair aı	nd surf	acing.	It is	
	AWS A5.4	Yield strength R _p	Tensile strength $R_{\rm m}$	0,1	1,5	0,6	25	20								bal.
	E310-16 EN 1600	> 350 MPa	> 550 MPa													
H 89	E 25 20 R	Elongation A5														
UTP		> 30 %														
D	Characteristics	and field of use	The rutile coated stid CrSi-, CrAI-, CrNi-ste It is used for operation	els/cas	st steel	s.						Ū		at resis	tant Cr	-,
-	EN ISO 1071 E C NiFe-13	NiFe-13 R _{P0,2} S A5.15 GDDroy, 340 MPg		1,2				bal.								45,0
86 FN	AWS A5.15 E NiFe-Cl															
UTP 8	211110 01	Hardness HB														
5		approx. 220														
	Characteristics	and field of use	Universally applicab	le for r	repair,	constr	uction	and p	roduc	tion we	elding.					
82	AWS 5.11 E NiCrFe-3	Yield strength R _{P0,2}	Tensile strength R _m	0,025	5,0	<0,4	19,0	bal.	1,5	2,2						3,0
anit Nicro 82	(mod.) EN ISO 14172	420 MPa	680 MPa													
Ξ	E Ni 6082	Elongation A	Impact strength K _V													
nan		40 %	120 J (RT)													
Thermo	Characteristics	and field of use	Thermanit Nicro 82 i alloys, heat resisden materials.													itic
	AWS 5.11 E Ni 6182	Yield strength $R_{P0,2}$	Tensile strength R _m	0,025	6,0	0,4	16,0	bal.		2,2						8,0
15	EN ISO 14172 E NiCrFe-3	400 MPa	670 MPa													
UTP 7015		Elongation A	Impact strength K_{ν}													
UTP		40 %	120 J (RT)													
	Characteristics	cs and field of use UTP 7015 is employ mended for weldin dings on unalloyed			ent ma	terials	, such	as aus	tenitic	to ferri	itic ste	els, as				
	AWS 5.11	Yield strength R _p	Tensile strength $R_{\rm m}$	0,2	0,1	0,6	25	bal.			0,1	1,8	0,22			10
	E NiCrFe-12 (mod.)	550 (≥ 500) MPa	740 (≥ 700) MPa													
5 AI	EN 14172	Elongation A5														
622	E Ni 6704	15 %														
OTP	cci		UTP 6225 Al is suitab cal and similar natur include an excellent strength. For service	re and resista	high n ınce aç	ickel c gainst	ontaini oxidat	ing ca ion an	st alloy	s. The	specio	ıl featu	ires of	the we	ld met	i- al

ALL PRODUCTS 29

Surfacing electrodes for wear protection

Name	Classification	Mechanical the weld me	properties of tal	Comp	osition	% (All v	veld met	:al)							
		НВ	HRC	С	Mn	Si	Cr	Ni	Мо	Nb	Ti	w	V	Fe	
WEARstick MnCr4	EN 14700 EZ Fe9 AWS A5.13 ~ E FeMn-A	approx. 200 - 250		0,6	13,0	0,8	4,5	4,0						bal.	
	Characteristics	and field of use	е		ings on		redomir f high M	,		_				ngs and n and	
WEARstick MnCr13	EN 14700 E Fe9	approx. 260		0,7	16,5	0,8	13,5							bal.	
	Characteristics	and field of us	е	WEARstick MnCr13 is suitable for claddings on parts subject to highest pressure a shock in combination with abrasion.											
WEARstick Dur 250	EN 14700 E Fe11	approx 270		0,15	1,2	1,1	0,8							bal.	
	Characteristics	and field of use	е	able c	leposit i	s requir	used for ed. Also I cast ste	suitable	_ '	,		_	,	machin- yed and	
WEARstick DUR 350	EN 14700 E Fe1	approx. 370		0,06	1,0	0,7	3,0							bal.	
	Characteristics	and field of us	е		stick DU d parts.		s particu	ılarly sui	ted for	wear res	istant s	urfacing	js on Mn	-Cr-V	
WEARstick DUR 600	EN 14700 E Fe8		56 - 58	0,5	0,4	2,3	9,0							bal.	
	Characteristics	and field of use	e	cast st		l high M	s univers n-steel,	, , ,			_			d	
WEARstick DUR 650	EN 14700 E Fe8		58 - 60	0,5	1,3	0,8	7,0		1,3	0,5				bal.	
	Characteristics	and field of us	е		stick DU		s suitabl	e for clc	ıdding s	tructura	l parts	subject 1	to abras	ion	
WEARstick XD 61	AWS A5.13 ~ E FeCr-A 1 EN 14700 EZ Fe14		approx. 60	3,2		1,3	32,0							bal.	
	Characteristics	and field of us	е				uited for sion com					on part	ts subjec	t to	
WEARstick XD 63	EN 14700 EZ Fe15		1 layer 62 2 layers 63	6,5	1,5	1,5	24,5			7,0				bal.	
	Characteristics	and field of us	9		stick XD rate imp		sed for h	ardfaci	ng of po	arts subj	ect to h	eavy ab	orasion v	vith	
WEARstick XD 65	EN 14700 E Fe16		approx. 65	4,5			23,5		6,5	5,5		2,2	1,5	bal.	
	Characteristics and field of use			WEAR extren	stick XD ne slidir	65 is su ig minei	uited for ral abras	highly c	ıbrasior o at elev	resistar vated te	nt clado mperat	lings on ures up	parts su to 500°	bject to C.	

Solid wires for repair, wear and corrosion protection

e C	Classification	Mechanical propert	ies of the weld metal				Comp	osition	n % (Al	l weld r	netal)			
Name				С	Mn	Si	Cr	Ni	Мо	Nb	Ti	٧	W	Fe
	AWS A5.9	Yield strength R _{P0,2}	Tensile strength R _m	0,08	6,5	0,8	19,5	9,0						bal.
×	ER 307 (mod.) EN ISO 14343-A	> 370 MPa	> 600 MPa											
anit	W 18 8 Mn	Elongation A												
Thermanit X		> 30 %												
Ę	Characteristics and	field of use	Thermanit X is suitab strength ferritic and c ioning layer under ho	austenit	ic stee	ls, har	d mang	janese						
0	AWS A5.9/SFA-5.9 ER 312	Yield strength R	Tensile strength R _m	0,15	1,6	0,5	30	9						
0/10	EN ISO 14343-A G 29 9	500 (≥ 450) MPa	≥ 750 MPa											
it 3	G 29 9	Elongation A												
n a		20 (≥ 15) %												
Thermanit 30/10	Characteristics and	field of use	Thermanit 30/10 is us steels of higher streng machine tools.											
ے	AWS5.9/SFA-5.9	Yield strength R	Tensile strength R _m	0,13	3,2	0,9	24,6	20,5						
Σ	ER310 (mod) EN ISO 1434-A	400(≥ 350) MPa	620 (≥ 55) MPa											
it 31	G 25 20 Mn	Elongation A5												
nan		38 (≥ 20)												
Thermanit 310 Mn	Characteristics and	field of use	Thermanit 310 Mn for and cast steel.	rjoining	g and s	urfacir	ng of m	atching	g / simi	lar hea	t resist	ing, rol	led, for	rged
2	AWS5.14/SFA-5.14	Yield strength R	Tensile strength R _m	0,02	2,8	0,2	19,5	67		2,5				<0,2
0	ERniCr-3 EN ISO 18274	≥ 380 MPa	≥ 620 Mpa											
Ξ	S Ni 6082	Elongation A5												
anit		> 35												
Thermanit Nicro 82	Characteristics and	field of use	Thermanit Nicro 82 c able steels or tool ste vated service temper	els. Ad	ditiona	ılly mix	ed joint							
	EN ISO 1071	Yield strength R	Tensile strength R _m	0,1	3,5			55			0,5			bal.
<u>=</u>	S C NiFe-2	> 300 MPa	> 500 MPa											
8051		Elongation A5												
⋖		> 25												
UTP	Characteristics and	field of use	UTP A 8051 Ti is parti iron as well as for join											
gi C	EN 14700	Hardness HB		w0,1	1,0	0,6	2,5		1					bal.
18m r 25(SZ Fe1	250												
WEARmig Dur 250	Characteristics and	field of use	WEARmig Dur 250 is where a good machin				ps on s	tructur	al part	s subje	ct to ro	lling w	ear and	d
. <u>ö</u> 0	EN 14700	Hardness HB		0,7	2	0,3	1,0				0,2			bal.
\Rm \ 45	SZ Fe 2	approx. 450												
WEARmig DUR 450	Characteristics and	field of use	WEARmig A DUR 450 impact and abrasion											
, <u>o</u> o	EN 14700	Hardness HRC		0,5	0,5	3	9,5							bal.
WEARmig DUR 600	S Fe 8	54 - 60												
WEA	Characteristics and	field of use	WEARmig DUR 600 is high impact and med				ole for I	MAG bı	uildups	on stru	ıctural	parts s	ubject	to
D	EN 14700	Hardness HRC		0,36	0,4	1,1	5,2		1,4			0,3	1,3	bal.
/EARmig Tool 58	S Fe 8	55 - 60												
WEARmig Tool 58	Characteristics and	field of use	WEAR Tool 58 is universal and abrasion.	ersally u	used fo	r MAG	buildu	ps on s	tructur	al part	s subje	ct to hi	gh imp	act

ALL PRODUCTS 31

Gas shielded cored wires for wear protection

Name	Classification	Hard	ness	Comp	ositio	n % (All	weld r	netal)								
		НВ	HRC	С	Mn	Si	Cr	Ni	Мо	Nb	Ti	Cu	w	V	В	Fe
UTP 402-G	EN 14700 T Z Fe10			0,1	6,6	0,6	17,1	7,8								bal.
	Characteristics and	l field of	use			oy type also be							up and	buffer	layer p	orior to hard
FOXcore Nicro 82-T0	AWS A5.34 ENiCr3 T0-4			≤ 0.03	3,2	0,4	19,5	bal.		2,5						1,4
	Characteristics and	l field of	use	Ni-bas combi			ored wi	re for h	nigh-q	uality	weldin	g of ni-	base c	alloys c	ınd diff	icult to welc
UTP FNM4-G	EN ISO 1071 T C NiFe-2	160		0,7	1,7	0,6		bal.								47,5
	Characteristics and	l field of	use			h 2% № ısed for									st iron p	oieces.
UTP ROBOTIC	EN 14700 T Fe 1	325- 375		0,25	1,75	0,55	1,7									bal.
352	Characteristics and	l field of	use	Seaml	ess me	dium al	loyed	core wi	re for	wear re	esistar	nt appli	cation	s of me	edium l	nard steels.
UTP ROBOTIC	EN 14700 T Fe 8		57- 62	0,45	0,4	3	9									bal.
600	Characteristics and field of use					romium to a co	,	,							icing a	pplications
UTP ROBOTIC	EN 14700 T Fe 8		57- 62	1,4	0,7	1,0	6,0			5,5						
601	Characteristics and	l field of	use			VB allo								sting p	arts su	bject to hec
UTP ROBOTIC	EN 14700 T Fe 15		57- 62	3,5	0,2	0,8	22,0			0,4						
6010	Characteristics and	l field of	use	shieldi	ng gas		en wit	nout sh	ieldin	g gas į	orotec	tion. Th	ne alloy	, desig	ned to	ith Ar-CO ₂ resist high acks.
WEARcore XD NiW46	EN 14700 T Ni 20		57- 62	2,8	0,1	0,1		bal.					42		0,7	1,1
	Characteristics and	l field of	use	rated i	nto a N deposit	NiB mat t, this w	rix. The re offe	nks to ers an c	the hi outstar	gh deg	gree of	prese	rvatior	of the	tungst	es incorpo- ten carbides in corrosive
WEARcore Dur 400-S	EN 14700 T Fe 1		40	0,15	1,6	0,75	2	0,75						0,4		bal.
(SAW)	Characteristics and	l field of	use	Subm	erged (arc surf	acing \	vire for	rebui	lding c	and ha	rd surf	acing (alloys c	of carbo	on steel par
WEARcore Dur 58 Nb-S	EN 14700 T Fe 8		57	1,6	0,8	0,8	6,0			8,0			1,4			bal.
(SAW)	Characteristics and	l field of	use	Sub-a	rc flux-	cored v	vire de	signed	to de	posit a	crack	-free m	artens	sitic all	оу.	

Open arc cored wires for wear protection

Name	Classification	Hard	Iness	Com	positio	n % (A	ll weld i	netal)									
		НВ	HRC	С	Mn	Si	Cr	Ni	Мо	ИР	Ti	Cu	w	V	В	Al	Fe
UTP 402-O	EN 14700 T Z Fe10	160		0,09	6,0	0,9	18,0	7,8									bal.
	Characteristics ar	d field o	of use				e recor ining di				ıp and	buffer	layer p	rior to	hardfad	cing. It	can
WEARcore MnCr8-O	EN 14700 T Z Fe9	240		1	17,2	0,3	8,2			2,5	0,12						bal.
	Characteristics ar	d field o	of use	and s		osion v	Mangar vear cor posit.										а
WEARcore MnCr13-O	EN 14700 T Fe9 after hardening	205	48-53	0,37	16,0	0,3	12,8										bal.
	Characteristics ar	d field o	of use				ed wire, so be us										
WEARcore Dur 200-O	EN 14700 T Fe9	190		0,28	0,4	0,1							,			1,5	bal.
	Characteristics ar	d field o	of use		sition r		ed wire o	_	,	_			_			,	
WEARcore 58 TiC-O	EN 14700 T Z Fe6		58	1,8	0,9	0,2	6,1		1,4		5,5						bal.
	Characteristics ar	d field o	f use	Martensitic Chromium-Titanium alloy designed to resist high stress abrasion with impact. Deposits usually do not relieve cracks.										on with	heavy		
WEARcore Dur 400-O	EN 14700 T Fe1		40	0,11	0,6	0,6	2,4										
	Characteristics ar	ıd field o	f use				igned fo		ilding	and ha	rd surf	acing c	of Carb	on stee	el parts	subject	ed to
WEARcore XD 60-O	EN 14700 T Fe16		60	4,5	0,6	0,7	27								0,5		bal.
	Characteristics ar	d field o	f use		hielded ow imp		d wire d	esigne	d to de	posit a	ın alloy	resisto	ınt to h	igh stre	ess grind	ding ab	rasion
WEARcore XD 62-O	EN 14700 T Fe16		63	5,4	0,2	1,3	27										bal.
	Characteristics ar	d field o	of use				oy desig				ress gr	inding	abrasio	on with	low im	pact. Th	ne
WEARcore XD 63-O	EN 14700 T Fe16		63	5,6	0,2	1,3	20,2			6,7							bal.
	Characteristics ar	d field o	f use		hielded		ored wi	re desi	gned to	o resist	high st	tress gr	inding	abrasi	on at se	ervice te	emper-
WEARcore XD 65-O	EN 14700 T Fe16		63	5,3	0,2	0,7	21,2		6,3	6,1			1,9	1,0			bal.
	Characteristics ar	ıd field c	f use				ored wi						inding	abrasi	on with	low imp	oact
WEARcore XD 70-O	EN 14700 T Z Fe8		70	Speci	al Fe b	ase all	оу										
	Characteristics and field of use			acteristics and field of use Self-shielded flux cored wire designed to give an extreme resistance against high-stress-grind ing abrasion and erosion without impact, hardness can be achieved in the first layer												-grind-	

ALL PRODUCTS 33

METALLOGRAPHIC STRUCTURES

Austenitic

Field of use & properties comments

An alloy that after solidification and cooling down to room temperature according to such micostructure is generally qualified as an austenitic one. Alloying elements stabilizing the austenite structure are most of the time Carbon, Manganese and Nickel but Chromium and Niobium might be used in combination in order to modify work hardenability and/or abrasion resistance. Austenitic alloys appreciated for building-up tasks, buffering prior overlaying with carbide containing alloys. Austenitic alloys with up to 0,7 % C and 20 - 30 (Mn + Cr) % with or without Ni, providing very

stable austenite are appreciated for overlay on carbon and low alloyed steels no matter the dilution could be as well for joints on "hard to weld" steels or dissimilar joints between carbon or low alloy steels and 14 % Mn Hadfield steels. Carbon level has a relative low influence on the final hardness at room temperature. High Manganese steels should not be exposed over long time intervals to temperatures exceeding 350 °C in order to avoid any embrittlement by carbide precipitation.

Main characteristics

Usual Austenitic & Martensitic single microstructures used in overlay welding.

- » Work hardenable
- » Not magnetic in as cast state
- » Strongly resistant to impacts
- » Not prone to crack propagation

- » Moderately resistant to abrasion most over in the work hardened state
- » Fairly resistant to rusting
- » Not hardenable by heat treatment
- » Cannot be flame cut

Martensitic

Field of use & properties comments

3 subfamilies of martensitic alloys are existing: unalloyed (mainly alloyed with C & Cr), medium alloyed (alloyed with C, Cr < 11 %, Mo, W, V, Nb) & stainless grades (alloyed with min. 12 % Cr). The martensite is a microstructure out of equilibrium, obtained by rapid cooling, the faster the cooling rate, the harder the microstructure. Low carbon, unalloyed martensitic alloys are primarily used for building-up to original dimensions or for buffering prior to hardfacing with harder materials. Overlay welding with martensitic alloys (as substrate or consumable) generally require preheating (\geq 150 - 350 °C depending on chemistry and thickness concerned)

in order to avoid cold cracking due inappropriate cooling rate. Medium alloyed martensitics thanks to their good tempering resistance may be used to repair welding on cold & hot working tool steels up to 500 - 550 °C.

Stainless martensitic alloys are fairly resisting to thermal shock, to wet corrosion and show a good behaviour face to adhesion and hot oxidation that makes them appreciated for overlays on caster and steel mill hot rollers and for Sulphur bearing fumes exhaust systems. These alloys don't suit for joining purposes nor used for overlaying austenitic grades.

Main characteristics

Usual Austenitic & Martensitic single microstructures used in overlay welding.

- » Generally good resistance against impacts up to 0,5 % C
- » Quite high resistance against compressive stresses
- » High response to heat treating
- » Particular good behaviour to adhesion wear (metal to metal sliding wear)
- » Prone to crack propagation
- » Low resistant to rusting with exception for martensitic stainless grades
- » Resistant to hot oxidation up to 800 °C and to hot corrosion for stainless grades

Complex carbide microstructure with austenitic or martensitic iron matrix

Field of use & properties comments

Alloys of this family perform very well when abrasion is concerned thanks to their variable proportions of widely dispersed carbides. Therefore most of these alloys contain as main alloying elements both carbon and chromium. Low carbon (1,5 - 3 %) favours small carbides quantities related to the matrix so they exhibit good abrasion resistance combined with a good thoughness properties making them capable to make a good compromise when both shocks and abrasion are present.

Increased level of carbon (up to 6 - 7 %), allow to boost the carbide number and sizes while the matrix progressively loses its toughness. As consequence of this, relief check cracks appear more frequently and are closer from each other's. With a few exceptions requiring specific procedures, it is generally preferred to use these alloys on substrates buffered with austenitic layers avoiding check cracks to move to the base material. The risk of spalling associated with check cracks and high hardness imposes to minimise the number of layers to 3 or 4. Combination of large and small carbides sizes allow to extend the abrasion wear resistance to fine abrasive particles.

Main characteristics

- » Highly resistant to abrasion under low & high compressive stresses
- » Moderate to low resistance to impacts
- » Fairly resistant to corrosion

- » Good resistance to heat
- » Only machinable by grinding
- » May develop relief check cracks
- » Cannot be flame cut

HARDNESS CONVERSION TABLE

R_m = Tensile strength (MPa) HV = Vickers hardness

HB = Brinell hardness HRC = Rockwell hardness

R _m	HV	НВ	HRC
200	63	60	-
210	65	62	-
220	69	66	-
225	70	67	-
230	72	68	-
240	75	71	-
250	79	75	-
255	80	76	-
260	82	78	-
270	85	81	-
280	88	84	-
285	90	86	-
290	91	87	-
300	94	89	-
305	95	90	-
310	97	92	-
320	100	95	-
330	103	98	-
335	105	100	-
340	107	102	-
350	110	105	-
360	113	107	-
370	115	109	-
380	119	113	-
385	120	114	-
390	122	116	-
400	125	119	-
410	128	122	-
415	130	124	-
420	132	125	-
430	135	128	-
440	138	131	-
450	140	133	-
460	143	136	-
465	145	138	-
470	147	140	-
480	150	143	-
490	153	145	-
495	155	147	-
500	157	149	-

R _m	HV	НВ	HRC
545	170	162	-
550	172	163	-
560	175	166	-
570	178	169	-
575	180	171	-
580	181	172	-
590	184	175	-
595	185	176	-
600	187	178	-
610	190	181	-
620	193	184	-
625	195	185	-
630	197	187	-
640	200	190	-
650	203	193	-
660	205	195	-
670	208	198	-
675	210	199	-
680	212	201	-
690	215	204	-
700	219	208	-
705	220	209	-
710	222	211	-
720	225	214	-
730	228	216	-
740	230	219	-
750	233	221	-
755	235	223	-
760	237	225	-
770	240	228	-
780	243	231	21
785	245	233	
790	247	235	
800	250	238	22
810	253	240	
820	255	242	23
830	258	245	
835	260	247	24
840	262	249	
850	265	252	

HV	НВ	HRC
278	264	
280	266	27
283	269	
285	271	
287	273	28
290	276	
293	278	29
295	280	
299	284	
300	285	
302	287	30
305	290	
308	293	
310	295	31
311	296	
314	299	
317	301	32
320	304	
323	307	
327	311	33
330	314	
333	316	
336	319	34
339	322	
340	323	
342	325	
345	328	35
349	332	
350	333	
352	334	
355	337	36
358	340	
360	342	
361	343	
364	346	37
367	349	
370	352	
373	354	38
376	357	
	278 280 283 285 287 290 293 295 299 300 302 305 308 310 311 314 317 320 323 327 330 333 336 339 340 342 345 349 350 352 355 358 360 361 364 367 370 373	278 264 280 266 283 269 285 271 287 273 290 276 293 278 295 280 299 284 300 285 302 287 305 290 308 293 310 295 311 296 314 299 317 301 320 304 323 307 327 311 330 314 333 316 334 319 339 322 340 323 345 328 349 332 350 333 352 334 355 337 358 340 360 342 361 343 364

1220

380

361

R _m	HV	НВ	HRC
510	160	152	-
520	163	155	_
530	165	157	_
540	168	160	_
1260	392	372	40
1270	394	374	
1280	397	377	
1290	400	380	
1300	403	383	41
1310	407	387	
1320	410	390	
1330	413	393	42
1340	417	396	
1350	420	399	
1360	423	402	43
1370	426	405	
1380	430	409	
1390	431	410	
1400	434	413	44
1410	437	415	
1420	440	418	
1430	443	421	45
1440	446	424	
1450	449	427	
1455	450	428	
1460	452	429	
1470	455	432	
1480	458	435	46
1485	460	437	
1490	461	438	
1500	464	441	
1510	467	444	
1520	470	447	
1530	473	449	47
1540	476	452	
1550	479	455	
1555	480	456	
1560	481		
1570	484		48
1580	486		
1590	489		
1595	490		
1600	491		
1610	494		

R _m	HV	НВ	HRC
860	268	255	25
865	270	257	
870	272	258	26
880	275	261	
1620	497		49
1630	500		
1640	503		
1650	506		
1660	509		
1665	510		
1670	511		
1680	514		50
1690	517		
1700	520		
1710	522		
1720	525		
1730	527		51
1740	530		
1750	533		
1760	536		
1770	539		
1775	540		
1780	541		
1790	544		52
1800	547		
1810	550		
1820	553		
1830	556		
1840	559		
1845	560		53
1850	561		
1860	564		
1870	567		
1880	570		
1890	572		
1900	575		
1910	578		54
1920	580		5-7
1930	583		
1940	586		
1940	589		
1955	590		
1960	590		
1970	594		
1970	374		

R _m	HV	НВ	HRC
1230	382	363	39
1240	385	366	37
1250	388	369	
1255	390		
		371	
1980	596		55
1990	599		
1995	600		
2000	602		
2010	605		
2020	607		
2030	610		
2040	613		
2050	615		56
2060	618		
2070	620		
2080	623		
2090	626		
2100	629		
2105	630		
2110	631		
2120	634		
2130	636		
2140	639		57
2145	640		
2150	641		
2160	644		
2170	647		
2180	650		
2190	653		
2200	655		58
	675		59
	698		60
	720		61
	745		62
	773		63
	800		64
	829		65
	864		66
	900		67
	940		68

Caution: Because of their approximate nature, conversion tables must be regarded as only an estimate of comparative values. It is recommended that hardness conversions be applied primarily to values such as specification limits, which are established by agreement or mandate, and that the conversion of test data be avoided whenever possible.

JOIN! We connect Metals and People

As a leader in the world of welding and part of the voestalpine steel and technology group, we are close to you with more than 100 years of experience, 50 subsidiaries and 4,000 sales partners worldwide. Thanks to our comprehensive product portfolio, welding expertise and global orientation, we know your needs and, as a total solution provider, ensure the best results for your most demanding challenges. Perfectly interlinked and as unique as your business.

Lasting Connections – Perfect alignment of welding machines, consumables and technologies combined with our renowned application and process know-how provide the best result for your requirements: A true and proven connection between people, products and technologies. The result is what we promise: The Perfect Weld Seam for Lasting Connections.

Tailor-Made Protectivity™ – Proven under the toughest conditions: Our products protect metal surfaces from wear and corrosion. With over 70 years of experience and the broadest product portfolio in the industry, we are your preferred partner for Surface Protection solutions. We deliver what we promise: Surface Protection tailored to your needs.

In-Depth Know-How – As a manufacturer of soldering and brazing consumables, we offer proven solutions based on 60 years of industrial experience, tested processes and methods, made-in-Germany. This in-depth know-how makes us the internationally preferred partner to meet your soldering and brazing challenge through innovative solutions. The result is what we promise: Innovation based on in-depth know-how.

The Management System of voestalpine Böhler Welding Group GmbH, Peter-Mueller-Strasse 14-14a, 40469 Duesseldorf, Germany has been approved by Lloyd's Register Quality Assurance to: ISO 9001:2015, ISO 14001:2015, OHSAS 18001:2007, applicable to: Development, Manufacturing and Supply of Welding and Brazing Consumables. More information: www.voestalpine.com/welding

